35 research outputs found

    btn1 Affects Endocytosis, Polarization of Sterol-Rich Membrane Domains and Polarized Growth in Schizosaccharomyces pombe

    Get PDF
    btn1, the Schizosaccharomyces pombe orthologue of the human Batten disease gene CLN3, exerts multiple cellular effects. As well as a role in vacuole pH homoeostasis, we now show that Btn1p is essential for growth at high temperatures. Its absence results in progressive defects at 37°C that culminate in total depolarized growth and cell lysis. These defects are preceded by a progressive failure to correctly polarize sterol-rich domains after cytokinesis and are accompanied by loss of Myo1p localization. Furthermore, we found that in Sz. pombe, sterol spreading is linked to defective formation/polarization of F-actin patches and disruption of endocytosis and that these processes are aberrant in btn1Δ cells. Consistent with a role for Btn1p in polarized growth, Btn1p has an altered location at 37°C and is retained in actin-dependent endomembrane structures near the cell poles or septum

    Mathematical Model of a Cell Size Checkpoint

    Get PDF
    How cells regulate their size from one generation to the next has remained an enigma for decades. Recently, a molecular mechanism that links cell size and cell cycle was proposed in fission yeast. This mechanism involves changes in the spatial cellular distribution of two proteins, Pom1 and Cdr2, as the cell grows. Pom1 inhibits Cdr2 while Cdr2 promotes the G2 → M transition. Cdr2 is localized in the middle cell region (midcell) whereas the concentration of Pom1 is highest at the cell tips and declines towards the midcell. In short cells, Pom1 efficiently inhibits Cdr2. However, as cells grow, the Pom1 concentration at midcell decreases such that Cdr2 becomes activated at some critical size. In this study, the chemistry of Pom1 and Cdr2 was modeled using a deterministic reaction-diffusion-convection system interacting with a deterministic model describing microtubule dynamics. Simulations mimicked experimental data from wild-type (WT) fission yeast growing at normal and reduced rates; they also mimicked the behavior of a Pom1 overexpression mutant and WT yeast exposed to a microtubule depolymerizing drug. A mechanism linking cell size and cell cycle, involving the downstream action of Cdr2 on Wee1 phosphorylation, is proposed

    Transcriptional Regulation Is a Major Controller of Cell Cycle Transition Dynamics

    Get PDF
    DNA replication, mitosis and mitotic exit are critical transitions of the cell cycle which normally occur only once per cycle. A universal control mechanism was proposed for the regulation of mitotic entry in which Cdk helps its own activation through two positive feedback loops. Recent discoveries in various organisms showed the importance of positive feedbacks in other transitions as well. Here we investigate if a universal control system with transcriptional regulation(s) and post-translational positive feedback(s) can be proposed for the regulation of all cell cycle transitions. Through computational modeling, we analyze the transition dynamics in all possible combinations of transcriptional and post-translational regulations. We find that some combinations lead to ‘sloppy’ transitions, while others give very precise control. The periodic transcriptional regulation through the activator or the inhibitor leads to radically different dynamics. Experimental evidence shows that in cell cycle transitions of organisms investigated for cell cycle dependent periodic transcription, only the inhibitor OR the activator is under cyclic control and never both of them. Based on these observations, we propose two transcriptional control modes of cell cycle regulation that either STOP or let the cycle GO in case of a transcriptional failure. We discuss the biological relevance of such differences

    Redundant Mechanisms Prevent Mitotic Entry Following Replication Arrest in the Absence of Cdc25 Hyper-Phosphorylation in Fission Yeast

    Get PDF
    Following replication arrest the Cdc25 phosphatase is phosphorylated and inhibited by Cds1. It has previously been reported that expressing Cdc25 where 9 putative amino-terminal Cds1 phosphorylation sites have been substituted to alanine results in bypass of the DNA replication checkpoint. However, these results were acquired by expression of the phosphorylation mutant using a multicopy expression vector in a genetic background where the DNA replication checkpoint is intact. In order to clarify these results we constructed a Cdc25(9A)-GFP native promoter integrant and examined its effect on the replication checkpoint at endogenous expression levels. In this strain the replication checkpoint operates normally, conditional on the presence of the Mik1 kinase. In response to replication arrest the Cdc25(9A)-GFP protein is degraded, suggesting the presence of a backup mechanism to eliminate the phosphatase when it cannot be inhibited through phosphorylation

    The modular systems biology approach to investigate the control of apoptosis in Alzheimer's disease neurodegeneration

    Get PDF
    Apoptosis is a programmed cell death that plays a critical role during the development of the nervous system and in many chronic neurodegenerative diseases, including Alzheimer's disease (AD). This pathology, characterized by a progressive degeneration of cholinergic function resulting in a remarkable cognitive decline, is the most common form of dementia with high social and economic impact. Current therapies of AD are only symptomatic, therefore the need to elucidate the mechanisms underlying the onset and progression of the disease is surely needed in order to develop effective pharmacological therapies. Because of its pivotal role in neuronal cell death, apoptosis has been considered one of the most appealing therapeutic targets, however, due to the complexity of the molecular mechanisms involving the various triggering events and the many signaling cascades leading to cell death, a comprehensive understanding of this process is still lacking. Modular systems biology is a very effective strategy in organizing information about complex biological processes and deriving modular and mathematical models that greatly simplify the identification of key steps of a given process. This review aims at describing the main steps underlying the strategy of modular systems biology and briefly summarizes how this approach has been successfully applied for cell cycle studies. Moreover, after giving an overview of the many molecular mechanisms underlying apoptosis in AD, we present both a modular and a molecular model of neuronal apoptosis that suggest new insights on neuroprotection for this disease

    What determines cell size?

    Get PDF
    AbstractFirst paragraph (this article has no abstract) For well over 100 years, cell biologists have been wondering what determines the size of cells. In modern times, we know all of the molecules that control the cell cycle and cell division, but we still do not understand how cell size is determined. To check whether modern cell biology has made any inroads on this age-old question, BMC Biology asked several heavyweights in the field to tell us how they think cell size is controlled, drawing on a range of different cell types. The essays in this collection address two related questions - why does cell size matter, and how do cells control it

    Plastic detection comb better than visual screening for diagnosis of head louse infestation

    No full text
    Finding lice can be difficult in head louse infestation. We compared a new louse detection comb with visual inspection. All children in two rural Turkish schools were screened by the two methods. Those with lice were offered treatment and the results monitored by detection combing. Children with nits only were re-screened to identify latent infestations. Using visual inspection we found 214/461 children (46%) with nits but only 30 (6·5%) with live lice. In contrast detection combing found 96 (21%) with live lice, of whom 20 had no nits. Detection combing was 3·84 times more effective than visual inspection for finding live lice. Only 10/138 (7·2%) children with nits and no lice were found to have active infestation by day 16. We found that the detection comb is significantly (P<0·001) more effective than visual screening for diagnosis; that nits are not a good indicator of active infestation; and that treatment with 1% permethrin was 89·6% effective
    corecore